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Abstract
Characterizing the motion of dislocations through covalent, high Peierls barrier materials is a
key problem in materials science, while despite the progress in experimental studies the actual
observation of the atomistic behaviour involved in core migration remains limited. We have
applied a hybrid embedding scheme to investigate the dissociated screw dislocation in silicon,
consisting of two 30◦ partials separated by a stacking fault ribbon, under the influence of a
constant external strain. Our ‘learn on the fly’ hybrid technique allows us to calculate the forces
on atoms in the vicinity of the core region using the tight binding Kwon potential, whilst the
remainder of the bulk matrix is treated within a classical approximation. Applying a 5% strain
to the dissociated screw dislocation, for a simulation time of 100 ps at a temperature of 600 K,
we observe movement of the partials through two different mechanisms: double kink formation
and square ring diffusion at the core. Our results suggest that in these conditions, the role of
solitons or anti-phase defects in seeding kink formation and subsequent migration is an
important one, which should be taken into account in future studies.

1. Introduction

Dislocations play a key role in the deformation of materials
as the carriers of plasticity, allowing materials to yield at
stresses far lower than those required to deform the perfect bulk
crystal. Given their importance, developing our understanding
of the atomic scale processes involved in dislocation migration
remains a key challenge in materials science. Though classical
elasticity theory based approaches have yielded great insight
into the interaction of such defects with their surrounding
crystal environment [1], the analytic expressions become
singular when extrapolated into the dislocation core regions,
and are thus unsuitable to understand the atomistic behaviour
of the core, for example in response to the application of an
external force.

Semiconductor device heterostructures and thin film
devices are increasingly important technologically. The
presence of dislocations in semiconductors can lead to
degradation of their electronic properties, since such defects
can alter the density, mobility and lifetime of electrical carriers,
as well as to mechanical failure. Semiconductors are materials
with a high Peierls barrier, as the covalent bonds lead to a
brittle lattice structure. As such, sub-Peierls dislocation motion
is expected to occur through the formation and subsequent

migration of kinks along the dislocation line [1]. The
energetic cost of kink formation leads to low dislocation
velocities relative to other materials, such as metals, which
have comparatively low barriers to dislocation motion.

In silicon much experimental work has been performed
to characterize the structure and behaviour of the different
occurring dislocation types. As silicon is the simplest high
Peierls barrier semiconductor, it forms an excellent prototype
for the study of dislocations in this class of materials. The
experimental work of Ray and Cockayne [2] established that
dislocations in silicon are dissociated, motivating the study of
the 30◦ and 90◦ partials rather than the 60◦ and the perfect
screw dislocations. The partials are separated by an intrinsic
stacking fault [3, 4], and lie on {111} type close-packed
glide planes. The experimental consensus is that they are
electrically inactive in their reconstructed forms [5–7], and that
any electrical activity should be associated with impurities or
defects located along the dislocation line.

Complementing the experimental work on silicon are
many computational studies [8–13], which have focused
on obtaining kink formation and migration energies from
static calculations, since meaningful molecular dynamics
simulations have, until now, been too expensive to perform
on systems which must contain, at the minimum, tens of
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thousands of atoms. Kinetic Monte Carlo simulations [14, 15]
have also been performed, taking the kink energies as
parameters from atomistic calculations in order to extrapolate
system behaviours up to the mesoscale. For a good review
of both the experimental and computational situation one may
turn to [16].

Of the partial pair, the 30◦ partial is the mobility-
controlling dislocation in silicon, as it has a lower velocity
than the 90◦ partial. The kink energies of the 30◦ partial have
been estimated using both DFT [8] and tight binding (TB) [12].
This dislocation has also been studied using the Stillinger–
Weber (SW) classical potential [13], which is able to reproduce
the correct reconstructed ground state in which dimers lie
along the dislocation line. In [12] soliton defects (undimerized
undercoordinated Si atoms) along the dislocation line are
also examined within the TB approximation, and these same
defects have also been studied using ab initio techniques
in [17]. Reference [17] established that the soliton is the
fundamental excitation of the reconstructed core, and thus
plays an important role in the plastic flow of the material.
In fact, the effect of impurities and reconstruction defects on
dislocation motion, although not a part of the classic Hirth
and Lothe [1] picture, is likely to be very significant [18].
Previous studies find a low energy barrier to the migration
of what are called solitons or phase switching defects along
the dislocation line, a behaviour we are able to monitor in
the simulations as discussed in section 3.2, during which we
observe these defects at high temperature and strain. To our
knowledge, no previous electronic structure based dynamical
simulations of kink formation and migration in the 30◦ partial
have been carried out to date, due to the computational
expense of simulating a system containing many thousands
of atoms for the order of hundreds of picoseconds, which is
the length of the simulation time necessary to observe the
core migrate through several Peierls valleys. In order to
make a dynamical simulation tractable, in the present work
we employ the ‘learn on the fly’ (LOTF) hybrid embedding
scheme [19]. The LOTF method has had much success in
the description of crack propagation, capturing features of
the tip reconstruction and mobility [20], and has also been
successfully applied to hydrogen platelets in silicon [21]. In
section 2, we provide details of the application of the scheme
to the problem of accurately representing the stress tensor
field associated with the presence of partial dislocations in
a Si matrix and simulating dislocation motion. The success
of LOTF in applications involving silicon is in no small part
due to the availability of an excellent classical potential, due
to Stillinger and Weber [22], to describe the bulk matrix
making up the greater part of our hybrid simulation cells.
For the problem of interest here, this potential is used to
ensure the effective propagation of an applied external strain
to the localized, chemically active dislocation cores, which are
treated within the tight binding approximation [23].

2. Methodology

The LOTF hybrid scheme combines the computational
efficiency of classical potentials with the precision of quantum

mechanical (QM) methods thus allowing the study of problems
requiring big systems (∼100 000 atoms) as well as ensuring
high accuracy, whenever required, in specific areas of the
system [19]. The forces used in the scheme are derived
from a universal potential whose parameters are vary in
time and across the system, being tuned ‘on the fly’ during
the simulation [26]. The aim of the tuning (parameter
optimization) procedure is to reproduce the correct target
forces which are, in our case, the SW force for the atoms
in the classical zone and the forces obtained from the Kwon
TB model Hamiltonian in the quantum zone. A buffer region
between the QM and classical zone is used to ensure a
smooth transition between the two potentials [27] and to handle
moving boundary regions accurately [20] while still enforcing
momentum conservation.

The atom-resolved values of the stress tensor associated
with the LOTF relaxed geometries are obtained from the local
values of the strain tensor, by applying the linear theory of
elasticity. A definition of the atom-resolved stress tensor is
obtained for all the four-fold coordinated Si atoms in the
system (all other atoms are assigned zero stress). Namely,
we compare the relative atomic positions with those of a
reference unstrained Si crystal, once rotations are factored out
by a straightforward matrix decomposition method, to compute
the strain tensor components and, from these, the stress
components via the elastic constants. As a first application
of our toolset, we compare the stress components obtained
by the purely SW and hybrid LOTF schemes with the results
predicted by classical elasticity theory in a representative
dislocation geometry.

In figure 1 the LOTF calculated σyy stress component
of a 90◦ partial dislocation is represented for a range of
distances from the dislocation core (solid black line). A second
plot shows the results obtained for the same system when
the atomic positions are fully relaxed using the SW classical
model only for the whole system (broken line). Significant
discrepancies between the predictions of the two atomistic
models can be seen well beyond the QM/MM boundary
distance from the core used in the LOTF method (of the
order of a few bond lengths, see inset in figure 2). We take
this as an indication that the coupling between the QM and
classical zones in the LOTF hybrid system has a crucial effect
on the correct representation of the local stress field around
the dislocation which the classical potential cannot represent.
Given that the local stress field is the primary cause of plasticity
behaviour by dislocation migration, this in turn suggests that
the latter cannot be expected to be well described in the absence
of a proper QM treatment of the inner core region, as we indeed
find below. We note that the stress values predicted for a 90◦
partial dislocation by standard elastic theory [1] are of no use
in the proximity of the dislocation core, because of the inverse
square root divergence of the classical formulation.

In order to further illustrate the importance of QM force
calculations around the dislocation core, we consider the
system in figure 2 as a second example, and we calculate
the vectors F(i, j,k) which represent the forces per unit surface
area which the stress tensor produces when resolved on
specific (i, j, k) planes. The system is a silicon slab with
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Figure 1. The main graph shows the σyy component of the stress
tensor calculated on a ∼10 nm long line of Si atoms starting from the
dislocation core. This extends into the (red-yellow) tensile region of
the stress field, in the direction shown by the bottom arrow in
inset (c). The dislocation core has been relaxed using the SW
potential (broken line) and the LOTF scheme (solid line). The
difference between the two plots is shown in inset (a) on a magnified
scale, showing that SW produces significantly less core deformation
for the same external load. A similar analysis carried out for the
compressive (blue) zone (upper arrow direction in inset (c)) produced
the stress difference shown in inset (b), showing much smaller
deviations.

the [110] direction aligned vertically, containing a 90◦ partial
dislocation having its core aligned with the [11̄0] direction
perpendicular to the figure plane, and associated with a (111)
stacking fault plane. In such a configuration it is not a
priori clear how the inter-atomic bonds are compressed or
stretched in the surroundings of the dislocation core. The
quantitative description of these subtle effects is, however,
crucial for making predictions on the mechanical properties
of the material. This is e.g., the case in problems involving
fracture propagation instabilities, where the deflection of the
cleavage plane during catastrophic brittle fracture is controlled
precisely by such effects. Indeed, static stress fields associated
with defects such as dislocations, although relatively weak
if compared with the tip-enhanced primary uniaxial tension
powering crack propagation, are experimentally known to
cause crack deflection [24].

The role of dislocations in generating crack propagation
instabilities will be investigated in detail in a forthcoming
work [25]. Here we present a preliminary analysis to
illustrate to which extent qualitative predictions on the system’s
mechanical properties may depend on an accurate description
of the elastic fields in a dislocation core region. For a
Si(110)[11̄0] crack propagating in the [001] direction (i.e. left
to right horizontally in figure 2) instabilities could occur
where the crack would deflect onto the (111) planes, even if
the external load were purely tensile (i.e. limited to the σyy

component). Such a phenomenon would be actively promoted
if the stress field induced by the dislocation (not limited to the
σyy component), produced different effects when resolved on
the (111) and (111̄) plane systems. For instance, since the

Figure 2. Representation of the force difference F⊥
(1,1,1) − F⊥

(1,1,−1) in
a silicon slab containing a 90◦ partial dislocation. The colours code
allows the identification of the (red-yellow) regions where crack
propagation on the (110) cleavage plane in the [001] direction (i.e.,
horizontally, left to right, in the figure) may deflect to the (111)
cleavage planes. In the (blue-green) regions of the plot deflection to
(111̄) cleavage planes is expected to be favoured.

connecting bonds between (111) planes are orthogonal to the
planes, the most relevant quantity for bond stretching/breaking
is just the [111] component of F(1,1,1), a scalar field F⊥

(1,1,1)

which can be readily calculated from the stress tensor. The
difference between this and the analogous F⊥

(1,1,−1) scalar field
is small, everywhere smaller than ∼1 GPa (figure 2). However,
it reveals the regions of the system where a deflection to
the (111) or (111̄) cleavage planes are favoured, opening
the way to fracture path prediction [25] consistent with the
observations [24]. Once again, in this example the high
accuracy of a scheme including QM models is necessary for
capturing the relevant physical effect. Indeed, small stress field
asymmetries induced by the dislocation in a much larger, tip-
concentrated, symmetric external load are the driving element
of the instability and they must be accurately calculated.

We next come to the system geometry we used to simulate
dislocation migration. We introduce the 30◦ partials into bulk
{111} oriented silicon by setting the core of each partial at a
distance +/ − (d) along the [112̄] direction from the centre of
the simulation cell, and then displacing the atoms in the cell
in accordance with the classical strain fields [1]. This results
in a pair of unreconstructed 30◦ partials with Burgers vectors
which sum to that of a screw dislocation, with a stacking
fault (SF) ribbon lying between them. In our simulations the
initial distance between the partials (the ribbon length) is set
to 34 Å. The choice of the initial distance has implications
which we will touch upon in section 3. In the standard theory
an energy cost is associated with introducing a SF into the bulk
matrix, which is balanced by the repulsive interaction between
the dislocations to define an optimal distance between the two
partials. We note, however, that in the SW model the SF
energy is zero due to the short range of the interaction, so that
the energy balance between creation of the SF region against
increasing distance between the two partials is not captured by
our model.
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Figure 3. Diagram showing simulation setup; a constant strain is
applied in the direction of the black arrows at the top and bottom
surfaces of the simulation cell, causing the partials to migrate in the
[112̄] direction.

Figure 3 presents a schematic of our simulation. The two
cores are shown as blue lines close to the cell centre. The
arrows along the top and bottom (111) surfaces illustrate our
application of a shear strain across the glide plane in order to
induce the partials to migrate in the direction of the shown
arrow, [11̄0]. As also shown, the simulation cell unit vectors
are a = a0

2 [111], b = a0
2 [11̄0] and c = a0

2 [112̄]. The cell
is periodic along the [11̄0] direction only. The cell dimensions
are 261.3 Å along [112̄], 30.96 Å along [11̄0] (the periodic core
axis) and 133.75 Å along [111], and there are 41 472 atoms in
the simulation cell in total. The lattice is scaled to the SW
lattice constant [22] asw = 5.43 Å.

The core of the 30◦ partial itself has a double period
reconstructed structure [12], due to dimerization occurring
along the dislocation line. In order to relax the dislocation
cores from their initial unreconstructed configuration we allow
the simulation cell to relax for 5 ps at 300 K, without applying
any shear strain. Using the LOTF [19, 20] scheme, we apply
forces from the Kwon [23] TB potential to the atoms along the
core and to atoms within a 4 Å radius (in the directions defined
by a and c). This produces a tubular QM region which follows
the dislocation line, with classical SW forces applied to the
remainder of the cell.

To induce dislocation motion we must apply a force
along the line of the dissociated screw dislocation, which is
achieved by applying a constant shear strain to the system as
schematically shown in figure 3. Three atomic layers at both
the top and bottom of the simulation cell are held fixed for the
duration of the simulation, ensuring that a constant strain is
present at all times.

In order to evaluate the force on a given atom in the
dislocation core, we consider only atoms which are up to three
nearest neighbour hops away. The cluster thus selected is
then terminated by hydrogen atoms to passivate the spurious
surface dangling bonds. The selected cluster is then passed
to the Kwon tight binding Hamiltonian ‘black box’ routine
of the LOTF scheme for force evaluation. As we use only a
localized cluster of atoms to obtain the QM force, this step

of the molecular dynamics algorithm is easily parallelized by
sending the cluster for each separate atom in the tight binding
region to a different processor, depending on availability (a
master–slave approach is used to optimize the computational
load balance). Parallelization on 32 standard (Intel Woodcrest)
processing elements, allowed us to simulate approximately
10 ps per day, using 1 fs MD time steps. We tested force
convergence using cluster sizes from two to six hops, and found
that three hops converged forces to within 0.01 eV Å

−1
.

The Kwon lattice constant is akw = 5.454 Å, and is thus
0.4% larger than asw. If neglected, this would give rise to a
compressive strain on the dislocation core where forces are
calculated using the Kwon TB potential. In order to avoid
this effect, we simply rescaled the bond lengths of the atomic
clusters which fed into the Kwon tight binding potential,
multiplying them by a factor 1 + ε where ε = akw

asw
. The

resulting forces must also then be rescaled by a factor 1
(1+ε)

.
The temperature of our simulation cell was set to 600 K, using
a Langevin thermostat. This temperature was chosen as a value
high enough to expedite kink formation rates, but not so high
as to cause melting in the core region, which was only ever
observed in test runs at 900 K and above.

Different dislocation core lengths were also considered,
ranging from a dimers pair (four lattice periods) up to a
twelve dimer core, as the behaviour of the core under strain is
dependent on its total length. At one extreme, a core containing
only a single dimer is too short to form kinks, and must
overcome the Peierls barrier if it is to migrate at all. As we are
using periodic boundary conditions along the core direction,
any formed kinks will have images in the neighbouring cells,
so that interactions with images is an issue for a relatively
short repeating core structure. In our work we chose to study
the motion of a core of four dimers or eight lattice periods
in length. Though this is sufficient for kink formation, there
is a possibility of kink-image kink interaction influencing the
simulation. However, we cannot perform a size test on core
lengths long enough to rule out kink–kink interactions using
our classical force model, since as mentioned above, the SW
potential does not predict kink formation during dislocation
motion. Yet, while simulations using longer cores and different
loading modalities are currently ongoing and will be presented
in a later paper, we feel that the results discussed below
obtained with the present system sizes are sufficient to provide
some valuable insight into the behaviour of dislocations in
Si. Shear strain can be introduced into the system in a
straightforward manner in the simulation cell, by displacing the
atoms along the [11̄0] direction as a function of height along
[111], according to (1). Here d is the maximum value of the
displacement along [11̄0], so that atoms at the top surface of the
simulation cell (taking the bottom to be the base [111] surface,
i.e. li = 0) are displaced by d .

δ[11̄0] = li/ l[111](d). (1)

3. Results

3.1. Simulations with Stillinger–Weber classical potential

We first explored the system using the SW potential in order
to gain an insight into the topological behaviour at a moderate
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computational expense. Migration of the partials is observed if
a 5% strain is applied to the system by the method described in
section 2, and only at 1400 K or above. In these conditions,
both lead and trailing partials migrate over 100 Å during a
simulation time of about 100 ps. However, these simulations
produce only a relatively incoherent core motion, described
below, with no obvious connection with kink propagation. In
the classic kink propagation mechanism we would expect to
see a single double kink nucleated from the straight core of
the dislocation and the pair of ‘left’ and ‘right’ kinks thus
formed travel along the dislocation line, dragging the core into
the next lattice position as they do so. Kink formation and
migration is a thermally activated process: as such we would
expect to see double kink nucleation occurring at an increasing
(exponentially dependent) rate on increases in the simulation
temperature. Using the Stillinger Weber model we observe
no such behaviour, in fact no movement of any kind at all is
witnessed within a 100 ps simulation time, at temperatures
smaller than ∼1400 K. At ∼1400 K both partials begin their
migration into the crystal, by a mechanism which involves
local melting of the defect core followed by its recrystallization
between one and three lattice steps further away into the
crystal, along the propagation motion. To summarize, the SW
description of dislocation motion appears incorrect, which is
not surprising as a classical three-body potential cannot be
expected to accurately reproduce the subtleties of dislocation
migration by kink formation and diffusion in silicon. However,
the SW model did produce migration of both the lead and
trailing partials under an applied strain, as well as an estimate
of the simulation time required for motion.

3.2. Simulations with the Kwon tight binding potential

Investigating the migration when forces in the core region were
evaluated using the Kwon potential yielded results markedly
different from those of section 3.1. We applied once more a 5%
shear strain to the 41 472 atom system described in section 2,
at a temperature of 600 K maintained using the Langevin
thermostat. A 1 fs simulation time step was employed for a
total simulation time of 100 ps. In order to locate the core
line, it was sufficient to look for one or more dimer pairs (see
figure 6) in the glide plane. Test simulations in which the QM
region was restricted to the core atoms only, that is to the eight
atoms along the dislocation line, showed a behaviour similar
to what observed in the simulations using the SW potential,
i.e. very little movement even at temperatures close to 1000 K.
In particular, no kink formation or migration was ever observed
in these simulations. This indicates that the strength of the
dimer bond, presumably well reproduced even when using
these modestly sized QM zone, is not in itself the limiting
factor for kink formation.

Kink formation and dislocation migration was instead
obtained once the QM zone was extended to include the first
and second nearest neighbours of the core line atoms, i.e. when
the Kwon potential was used to evaluate the forces on the
atoms lying within a radius of about 7–8 Å from the core line.
The position of the lead partial as a function of time during
migration is shown in figure 4. Each circled point on the graph

Figure 4. Position of leading partial as a function of time, measured
as number of lattice migration steps.

corresponds to a complete migration step into the next Peierls
valley, for a total of ten steps occurring over approximately
110 ps. We see a mixture of short and relatively long intervals,
consistent with the stochastic nature of kink formation. We
note that dislocation migration poses some problems to the
definition of the core (QM) region to be used in our hybrid
scheme. For instance, during the simulations the dimer bonds
at the core temporarily break apart and then reform a few
femtoseconds later. Time averaged atomic positions were
therefore used to calculate whether atoms were dimerized in
the [11̄0] direction or not, as the temperature and strain result
in large atomic oscillations making the instantaneous atomic
coordinates unreliable for this scope. However, simply using
the time averaged coordinates still proved not sufficient for
a coherent definition of the quantum zone, as the dimers
themselves can ‘move’ from linking a pair of atoms to another
pair along the same dislocation line, or to a pair belonging
to the next migration site on the glide plane. A very simple
hysteretic algorithm was thus used, in which the quantum zone
was updated only if the number of QM core atoms calculated
at a given time along the system trajectory was greater than
that in the ‘perfect’ core determined at the beginning of
the simulation, i.e. if a new dimer pair had formed in the
neighbouring Peierls valley.

Figure 5 shows a histogram of the time elapsed between
the beginning and the end of a core migration event into the
next Peierls valley. This is the time taken for a migration once
the initial kink has formed. The longest migration step takes
around 5 ps to complete, whereas seven of the observed steps
occur just within 2 ps. These results suggests two different
migration modalities, one associated with a typical time
centred around 2000 fs and a second, less frequent one, taking
around 4500 fs to complete. Direct analysis of the motion
patterns associated with the events occurring at these two
timescales allows to establish that two different mechanisms
are indeed operating. This is illustrated in figures 6 and 7.

Figure 6 portraits the migration event occurring via the
‘slower’ mechanism. Each sub-figure is labelled by its
corresponding simulation time along the system trajectory,
panel (a) showing the core configuration at t = 42.8 ps, and
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Figure 5. Histogram demonstrating the length of time taken for each
migration step, from a perfect core position to the next core position
in the lattice. The time interval width is set to 50 fs.

the final panel (h), corresponding to t = 48.5 ps. The first
panel (a) shows the core structure before it begins to migrate.
One important thing to note is the prevalence of solitons along
the dislocation core line. At this temperature and strain, only
two complete dimer pairs are visible, the rest of the atoms
being unbound. Panel (c) reveals the formation of a double
kink, developed from the anti-phase defect (APD) originally
lying between the two dimers in panel (a). This suggests
that the presence of anti-phase defects directly influences
kink formation, although this effect was not investigated in
previous analyses [8, 12] for simplicity. The next step in the
migration is shown in panel (e), and consists of the formation
of a square complex at the dislocation line (bottom of the
panel). Once more, the precursor of the structure observed
is an APD lying immediately beneath the dimer. The square
complex then forms a new bond with an atom in the dimer

pair (panels (f), (g)) and the original dislocation line eventually
migrates to the neighbouring Peierls valley (panel (h)), with
the majority of the dislocation core again consisting of APDs
rather than stable dimerized pairs as in the beginning of the
process.

Figure 7 illustrates one of the ‘quicker’ migration steps
discussed above. As before, the initial core configuration
contains many APDs as well as dimers, and, crucially, in
panel (c) a square complex has formed on the dislocation
line, seeded by an APD, with two dimers remaining above
and below it. The square complex then proceeds to migrate
along the core and in a ‘zipper’-like motion (upwards in the
snapshot sequence shown), forming regular hexagonal rings on
its left and creating APDs and new dimers in the neighbouring
Peierls valley as it does so. Panels (f) and (g) are reminiscent
of the migration observed in figure 6. The quick migration
mode relies on the formation of a square complex, as seen
in slide (c), which is seeded by an APD, followed by the
subsequent migration, rather than break-up, of that complex
along the dislocation line. This is achieved by a concerted
bond switching mechanism that effectively shifts dimer pairing
to the next neighbouring Peierls valley along the partial motion
direction.

To summarize, in this short four-dimer dislocation line
segment, simulated at 600 K under 5% strain we are
able to observe different types of motion corresponding to
different typical migration times. APDs are ubiquitous in our
simulations in these conditions, suggesting their relevance for
the microscopic mechanism of migration of the present Si
dislocation system and quite possibly other high Peierls barrier
materials.

4. Conclusion

Using the LOTF hybrid scheme we have been able to model
the migration of the dissociated screw dislocation in silicon

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 6. Slow migration step; a double kink is initially formed, eventually leading to kink migration along the remainder of the dislocation
line. (a) 42.82 ps; (b) 43.70 ps; (c) 44.16 ps; (d) 44.40 ps; (e) 45.42 ps; (f) 46.04 ps; (g) 47.78 ps; (h) 48.52 ps.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 7. Quicker migration step; the square complex formed in (c) migrates the length of the dislocation line, ‘pulling’ trailing dimers across
to the next Peierls valley in a zipper-like upwards motion. (a) 81.40 ps; (b) 81.48 ps; (c) 82.34 ps; (d) 82.58 ps; (e) 82.92 ps; (f) 83.36 ps;
(g) 84.38 ps; (h) 84.82 ps.

over a 100 ps time scale, and to observe the bond switching
paths involved in kink formation and migration. In the classical
picture [1], the role of undimerized core Si atoms (such as those
associated with APDs) in kink formation and migration is not
prominent, while our simulations suggest that any complete
analysis of kink formation rates should take their structures
into account. Indeed, while several authors [12, 17] have
studied the characteristics of APDs in the 30◦ partial in a
static context, our observation of the prevalence of such defects
under conditions of high strain suggest them as the likely
precursors to double kink formation, which is the dislocation
migration limiting step. We find that the Stillinger–Weber
potential is not sufficiently accurate to investigate the delicate
bond breaking/forming processes occurring along dislocation
migration, at most providing useful order of magnitude
insights into the relevant strain fields and simulation timescales
required to study the migration. However, the silicon bulk
region modelled by the Stillinger–Weber classical potential is
an effective medium for the transmission of the applied stress
field to the dislocation cores, provided that its use is limited
to four-fold coordination regions and moderate strain values,
and that the correct elastic boundary conditions are supplied
by using a QM model to determine the relaxed core region
structure.

The QM region must extend well beyond the dimerized
atoms on the dislocation line, revealing that an explicit
electronic structure representation must be used to model the
first and second nearest neighbours of the core atoms in order
to observe core migration. Our results further suggest that
kink formation readily occurs in spite of the energy gain
associated with dimer bonding along the core. Indeed, in
all the migration events observed in our simulations many
of the core atoms are undimerized for a large fraction of

time, so that the energy involved in breaking the dimer
bond does not appear to be a limiting factor for migration.
In particular, two distinct migration pathways emerged, one
involving conventional double kink formation and subsequent
migration (figure 6) and a second, quicker one involving
coherent motion of a square complex along the dislocation line
(figure 7). Although our simulations were performed using
high driving stresses and a small periodically repeated core
length involving eight core atoms only, the observed behaviour
is rich in character. Nonetheless we note that simulations using
longer dislocation cores may add on the present results by
revealing further dislocation migration mechanisms. Future
work on this problem will further explore the effects of varying
the dislocation core lengths and simulation temperature on the
predicted migration pathways. Once the main migration steps
are determined, the hybrid scheme used in this work could be
redirected to calculating their associated free energy barriers,
to improve on the poor statistics obtained by the simple MD
simulation approach. This could be achieved e.g., by carrying
out thermodynamic integrations based on the accurate forces
available in the QM regions.
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